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Abstract 

The complete-linkage and Jarvis-Patrick clustering 
algorithms are used to identify discrete conforma- 
tional subgroups for a chemical fragment from crys- 
tal structure data. Fragment conformations are 
defined by Nt torsion angles for N s occurrences of the 
fragment in the Cambridge Structural Database. 
Both algorithms are extensively modified to handle 
2D topological symmetry of the fragment and the 3D 
conformational enantiomers which occur in crystal 
structures. The modified procedures ensure that sym- 
metry equivalents of a given conformation are 
optimally superimposed in a unique cluster. A 
modified single-linkage algorithm, based on cluster 
centroids, is used to place the discrete clusters in a 
single asymmetric unit of conformational space. 
Principal-component analysis provides a graphical 
representation of the clustering process. The 
complete-linkage and Jarvis-Patrick algorithms may 
be preferable to single-linkage cluster analysis [Allen, 
Doyle & Taylor (1991). Aeta Cryst. B47, 
29-40] since they minimize the effects of 
'chaining' i.e. the linkage of major clusters through a 
chain of outlying observations. Both of the new 
algorithms have been tested using a trial data set of 
222 six-membered carbocycles of known conforma- 
tional complexity. The new algorithms are judged to 
provide a more effective conformational breakdown 
of the trial data set (in chemical terms) than that 
obtained with the single-linkage method alone. 

I. Introduction 

Given a large number of crystallographic observa- 
tions of a molecular substructure (e.g. taken from the 
Cambridge Structural Database, CSD; Allen, 
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Kennard & Taylor, 1983), it is of considerable inter- 
est to identify any discrete conformational groups 
that might be present. If two or more well- 
characterized conformations exist, then each can be 
used as an energetically preferred alternative in 
model building. The preceding paper in this series 
(Allen, Doyle & Taylor, 1991a; hereafter ADT1) 
describes how a common agglomerative clustering 
technique, the single-linkage algorithm (see e.g. 
Everitt, 1980), may be used for this purpose. In 
particular, we have shown how the algorithm can be 
modified to take account of the topological symme- 
try of the fragment; many fragments of chemical 
interest exhibit such symmetry, and its detrimental 
effects on normal principal-component and cluster 
analyses are summarized in ADT1. We have also 
shown how the results of the symmetry-modified 
algorithm can be passed to a principal-component 
analysis to obtain a visual representation of all 
clusters within one 'asymmetric unit' of conforma- 
tional space. 

The symmetry-modified single-linkage algorithm 
was shown to work effectively on a trial data set of 
222 six-membered rings, whose conformations were 
defined by the six intra-annular torsion angles rl-r6. 
However, we cannot expect that the algorithm will 
always be as successful, particularly when applied to 
molecular fragments which can adopt a large number 
of poorly defined conformations, since the single- 
linkage method is well known to suffer from a 
problem called 'chaining'. This is an inability to 
distinguish between two clusters that are connected 
by a chain of observations (Fig. 1). The problem is 
particularly likely to occur in conformational analy- 
ses, where each cluster might represent a potential- 
energy well and the connecting points might lie along 
a valley in the potential-energy hyperspace. An 
example of the problem is given in the next paper in 
this series (Allen, Doyle & Taylor, 1991b). 

© 1991 International Union of Crystallography 
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In the present paper we discuss two alternative 
clustering algorithms that are known to be less prone 
to chaining. They are the complete-linkage method 
(see e.g. Everitt, 1980) and the Jarvis-Patrick 
algorithm (Jarvis & Patrick, 1973). The latter is a 
nonhierarchical single-step clustering technique 
which has been used successfully in other areas of 
chemistry (Willett, Winterman & Bawden, 1986). We 
have tested these algorithms on the trial data set of 
six-membered carbocycles used in ADT1; full details 
of the generation of this data set from the CSD, and 
of its chemical and conformational composition, are 
given there. 

2. Calculation of dissimilarities 

As with the single-linkage algorithm (ADT1), both 
the Jarvis-Patrick and complete-linkage methods 
require an estimate to be made of the dissimilarity 
between each pair of observations in the data set. We 
again use the Minkowski metric for this purpose, 
whence the dissimilarity coefficient of fragments p 
and q is defined as: 

Dnpq = (dr i  q 
i I 

(1) 

where 

(dZi)pq = i(r,)p - (r~)qt/18ON, (2a) 

or  

(dr,)pq = [360 - I(~',)p - (Y,)q[]/18ONr (2b) 

The minimum value of (ATi)pq is taken from (2a) or 
(2b) as a result of the phase restriction 0___ 17"/I-< 
180 °, where the (r;)p and (Ti) q a r e  the torsion angles 
used to describe the conformations of fragments p 
and q respectively. In this work, the ~'~ are the 
intra-annular torsion angles of the six-membered 
carbocycles which constitute the trial data set, and 
the integer-power n is set to 1 (city-block metric). 

3. Unmodified Jarvis-Patrick algorithm 

Nearest-neighbour table 

The basic Jarvis-Patrick algorithm employs a 
'nearest-neighbour table' (NN table), an array of N/ 
rows (Ny = number of fragments in data set) and Kjp 
columns. Kjp is a small, user-defined integer (Kjp << 
N/). The pth row of the NN table records, in any 
order, the Kjp nearest neighbours of the pth frag- 
ment, i.e. the fragments deemed to be most similar to 
fragment p, based on the dissimilarity coefficients 
Onpq (q = 1 . . .p -  1, p + 1...Nr ). The NN table is an 
integer array, the nearest neighbours being identified 
by fragment number alone; no dissimilarity values 
are carried forward to the clustering process. Table 1 
shows the first ten rows (fragments) of the NN table 
for the trial data set with Kjp = 10. 

In the present application of the Jarvis-Patrick 
algorithm we have used the concept of an overall 
'maximum dissimilarity', Dmax. The value of Oma x is 
set by the user and implies that fragment q can never 
appear in the pth row of the NN table, or vice versa, 
if Dnpq > Dma x. The purpose is to ensure that all 
fragments falling in the pth row of the NN table are 
genuinely similar to fragment p. In some cases, it 
may now be impossible to find Kjp nearest neigh- 
bours for some fragments (e.g. for outliers, which are 
conformationally dissimilar to all other members of 
the data set). In this case, the residual NN table 
entries are filled with zeros. 

It is obvious that we need to calculate all of the ND 
= [ N z ( N y -  1)/2] unique dissimilarities in assembling 
the NN table. However, at any stage we need only 
store N/x  Kjp of these values, where Kjp has been set 
to a maximum of 28 in the present implementation. 
Thus core-storage requirements are moderate. 
Furthermore, the summation in equation (1) can 
often be terminated before completion, e.g. as soon 
as the partial sum exceeds Dmax, or is sufficiently 
large that neither fragment can possibly be one of the 
gjp nearest neighbours of the other. This leads to 
some savings in the cpu-intensive calculation of the 
No unique dissimilarities. 
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Fig. 1. A two-dimensional data set in which 'chaining' of the two 
major clusters may occur. 

Jarv is -Patr ick  clustering 

The Jarvis-Patrick clustering technique is based on 
the concept of shared nearest neighbours. The frag- 
ments, p and q, are assigned to the same cluster if 
both of the following criteria are satisfied in the NN 
table: 

(a) Fragment p is one of the Kjp nearest neigh- 
bours of q and fragment q is one of the Kjp nearest 
neighbours ofp.  

(b) At least Cjp of the Kjr, nearest neighbours of p 
and q are common to both lists. The Jarvis-Patrick 
commonality threshold Cjp is specified by the user. 
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Table 1. Jarvis-Patrick NN table for the first ten 
fragments of the trial data set of 222 six-membered 

rings, obtained with Kjp = 10 

F r a g m e n t  ( f )  The  K i p ( =  10) neares t  n e i g h b o u r s  o f  ( f )  

I 2 3 4 193 28 39 171 14 12 25 
2 I 3 4 191 193 39 171 14 12 25 
3 171 39 191 28 31 204 9 14 12 25 
4 1 2 3 193 191 39 171 14 12 25 
5 177 23 44 153 157 40 195 20 26 13 
6 44 26 151 17 177 7 155 215 154 169 
7 44 17 177 40 154 6 42 215 26 179 
8 144 97 30 135 36 187 54 80 98 152 
9 39 25 191 24 29 193 204 31 12 213 

10 18 205 143 188 142 147 41 43 156 141 

These two simple clustering rules are sufficient to 
enable all N: fragments to be assigned to their 
respective clusters by straightforward examination of 
the NN table. Jarvis-Patrick clustering is a single- 
step procedure, in contrast to the single- and 
complete-linkage methods. Once the cluster member- 
ship is determined, it can be used in conjunction with 
the basic data matrix to generate listings of torsion 
angles for each conformational subgroup, together 
with the simple statistics detailed in ADT1. 

Results from the unmodified Jarvis-Patrick method 

The unmodified algorithm was applied to the trial 
data set, with various values of Kjp (the NN table 
w i d t h ) ,  Dmax (the maximum dissimilarity cut-off) and 
Cjp (the commonality threshold for clustering). For 
g j p  = 1 0 ,  O m a  x = 0 " 1 ,  the results for variable Cjp, in 
the range 2-9, are presented in Table 2. An increase 
in Cjp at constant Kjp and Dmax obviously increases 
the selectivity of clustering. Thus there is a steady 
increase in the number of fragments in the small 
clusters of size _ 3, from 34 at Cjp = 2 to 192 at Cjp 
= 9, for the total data set of Ny = 222 fragments. Our 
subjective judgement (see discussion in ADT1) is that 
the chemical sensibility of the final clustering for Cjp 
= 3 - 6  is almost identical. Each of the 11 or 12 
largest clusters represent similar expected sub- 
divisions. It is only from Cjp = 7 onwards that these 
clusters become increasingly fragmented. 

The clusters at Kjp = 10, Dmax = 0"1 and CJp = 5 
are summarized in Table 3. This was considered to 
be the optimum clustering point on chemical 
grounds, and by comparison with the unmodified 
single-linkage results (Table 4 of ADT1). In the 
single-linkage case, there were 38 singleton clusters 
with the remaining 184 fragments coalesced into 24 
clusters of population ___2. For the Jarvis-Patrick 
algorithm there are 59 singletons and the remaining 
163 fragments formed only 15 clusters of size ___ 2. 
The mean torsion angles for the 12 Jarvis-Patrick 
clusters of size _ 3 are given in Table 3, together 
with cluster numbers and sizes from the single- 
linkage data of ADT1. 

Table 2. Clustering ability of the unmodified Jarvis- 
Patrick algorithm applied to the trial data set 

The  N N  table  length  ( K j p =  10) a n d  the  overal l  d iss imilar i ty  cu t  o f f  (D,,,x = 
0-1) were held c o n s t a n t  a n d  the  c o m m o n a l i t y  c r i te r ion  G P  al lowed to vary  
f rom 2-9.  N~ N2, a n d  N3 are the n u m b e r  o f  resul t ing clusters  c o n t a i n i n g  1, 2 
a n d  3 members .  N, is the n u m b e r  of  clusters  wi th  -> 4 members ,  N~p "x is the  
p o p u l a t i o n  o f  the largest  cluster.  

Cjp N~ N2 N3 Nc Ng/"x 
2 32 2 0 15 34 
3 50 3 0 12 33 
4 54 2 0 12 33 
5 59 3 0 12 33 
6 69 3 0 11 32 
7 83 7 I 14 16 
8 121 6 7 9 14 
9 182 7 3 3 9 

There are a few small but significant differences in 
the clustering obtained by the two unmodified 
algorithms. The Jarvis-Patrick method generates 
additional subdivisions of the phenyl and chair clus- 
ters, and also shows enhanced populations for the 
'half-chair' conformations 11 and 12 (cf. 10 and 11 
of ADT1). It fails however, to locate the very small 
cluster of + - 0 + - 0  boat variants (cluster 6 of 
ADT1). Examination of the NN table showed that 
the three fragments forming this cluster were the only 
entries in each other's Kjp lists; this is a result of the 
Dma x = 0"1 limitation. The commonality requirement 
(C = 5) automatically excludes cluster formation in 
this case. Relaxation of either the Cjp o r  Oma x set- 
tings (to Cjp = 3 o r  Oma× = 0-25) restores the missing 
cluster, but produces some undesirable side effects. 
Some of the symmetry variants of the half-chair/sofa 
conformations begin to coalesce into larger and 
chemically unreasonable groupings. This is 
undoubtedly due to the proximity in conformational 
space and to the low energy barriers that separate 
them. 

4. Symmetry-modified Jarvis-Patrick clustering 

Generation of the symmetry-modified nearest- 
neighbour table 

The results from the unmodified Jarvis-Patrick 
algorithm suffer from the same problem as those 
from unmodified single-linkage clustering (ADT1), in 
that fragments which should be clustered together 
are split over several symmetry-related clusters. This 
arises (see ADT1) because the atom numbering of 
each fragment is arbitrary. Thus, in calculating D~, o 
from (1), the (r;)p are paired with the (~'i)o in only one 
of several possible ways. Two fragments which are 
very similar in geometry may therefore not be recog- 
nized as such. 

Our solution to the problem is identical to that 
used in ADT1. The dissimilarity of fragments p and 
q is determined by superimposing the two fragments 
in all possible ways (including generation of the 
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Table 3. Mean torsion angles (°; e.s.d. 's in parentheses)for major clusters obtained by unmodified Jarvis- 
Patrick clustering of the trial data set (Kjp = 10, Dmax = 0" 1, Cjp = 5) 

H e r e  ~ .~  is t he  c lus t e r  n u m b e r  a n d  N~ P is the  p o p u l a t i o n  o f  t he  c lus t e r  o b t a i n e d  here ,  a n d  N~ L, /V~p L a re  t he  c o m p a r a b l e  va lues  o b t a i n e d  by u n m o d i f i e d  
s ing le - l inkage  c lus t e r ing  (Al len ,  D o y l e  & Tay lo r ,  1991a; T a b l e  4). 

C lass  N~ I' N,~ p NSc¢ c N'~p L r ,  r2 r3 r ,  "r, r6 

Phenyl I 31 1 36 0-2 (2) - 0 . 4  (2) 0.2 (2) 0.2 (2) - 0 . 4  (3) 0.2 (3) 
2 4 - 2.9(11) 1-5(6) - 4 . 7 ( 5 )  3.6(14) 0.5(18) -3 .7 (15 )  

Boat 3 15 2 15 4.8(17) -75 .5(11)  71.4(8) 1.1 (11) -70 .8(10)  67.2(16) 
4 15 3 15 0.1 (9) 65.9 (17) -65 .9  (25) -0 -4  (15) 66.7 (17) -66-4  (22) 
5 9 4 7 65.4 (28) 0-1 (18) -64 .5  (25) 63"8 (45) 0.8 (43) -65 .5  (37) 
6 4 5 3 - 69.6 (29) 74-8 (25) - 4.8 (36) - 66.6 (29) 70.0 (27) - 2.1 (32) 
7 4 7 4 - 0-3 (8) - 56-8 (11) 54.5 (10) 0-5 (7) - 55-8 (10) 57.0 (8) 

Chair 8 33 8 38 55.9 (7) - 54.5 (7) 53.4 (8) - 54.3 (I 1) 54.9 (8) - 55.5 (7) 
9 17 9 19 - 55.1 (13) 53.2 (10) - 52.3 (15) 53.9 (15) - 55.3 (13) 55.4 (13) 
10 4 41.8 (17) -45.1 (29) 58.6 (42) -05 .5  (34) 61.7 (45) -51 .0  (25) 

Half-chair 11 9 10 7 59.5 (23) - 35.5 (38) 5.6 (29) 0.8 (27) 22-6 (46) - 52.6 (34) 
12 12 11 5 12.6 (38) -5 -5  (23) 23.2 (45) -47 .3  (37) 54.9 (25) -37 .4  (44) 

mirror-image fragments if desired, see Table 3 of 
ADT1). A dissimilarity coefficient is calculated from 
(1) for each superposition and the lowest value is 
taken as D~,q. The dissimilarity matrix thus calculated 
can be used to generate an N N  table, as before. 
Now, however, the nearest neighbours of each frag- 
ment have been determined much more reliably, 
since fragment overlap has been optimized. 

Reorientation o f fragments 

It is now straightforward to determine the mem- 
bership of a revised set of clusters using the 
symmetry-modified NN table as the new basis for 
Jarvis-Patrick clustering. However, in addition to 
determining the membership of each cluster, it is 
necessary for the symmetry-modified procedure to 
identify how each fragment in the cluster is to be 
superimposed on every other fragment. This 
information would be required, e.g. for calculating 
average geometries for the clusters. 

In modifying the single-linkage algorithm (ADT1), 
we stored the symmetry operator that optimally 
superimposes any fragment q onto fragment p. This 
information was used to reorient continually frag- 
ments while clusters were grown and merged during 
the single-linkage process, so that at any given time 
the members of a cluster were all oriented correctly 
with respect to one another. 

In principle, we could use the same approach here. 
However, we have chosen to implement the fol- 
lowing simpler procedure. The Jarvis-Patrick clus- 
tering is allowed to proceed without any fragment 
reorientation, so that the members of each cluster 
are determined, but their optimum relative orienta- 
tions are not. An arbitrary member of each cluster of 
size > 1 is then taken as the 'cluster root'. The 
symmetry-optimized dissimilarity coefficients of the 
remaining members of the cluster are recalculated 
with respect to the cluster root. This calculation will 
superimpose each member of the cluster optimally 
onto the cluster root. Assuming that the cluster is 

reasonably homogeneous, which it will be if the 
cluster analysis has been successful, then each 
member of the cluster will be in its optimum relative 
orientation to every other member. 

Reorientation of clusters in conformational space 

The Jarvis-Patrick and single-linkage methods 
differ in that the latter is a stepwise, agglomerative 
algorithm that merges fragments or clusters one by 
one until all members of the data set are in the same 
cluster. When modified to allow for fragment sym- 
metry, the final cluster produced by the single- 
linkage algorithm can be viewed as the best overlay 
of all fragments in the data set. This final cluster 
therefore represents a unique 'asymmetric unit' of 
conformational space. We have shown (ADT1) that 
the single-linkage method can be used to orient a set 
of clusters from an intermediate step of the 
agglomerative process so that they are in the closest 
mutual proximity to one another, i.e. intercluster 
dissimilarities are minimized. 

The same methodology cannot be used for 
symmetry-modified Jarvis-Patrick analysis, since a 
single cluster embracing the complete data set is 
never formed. Whatever the values of the parameters 
gjp, Dma x and CJp, the end point of the Jarvis- 
Patrick algorithm is a set of discrete clusters drawn 
(in general) from different asymmetric units of con- 
formational space. It is, however, highly desirable to 
reorient the clusters so that they are in their closest 
mutual proximity. One possible method for this 
'clustering of clusters' is to choose the largest cluster 
and use the reorientation method described above to 
overlay all other clusters onto its root. There are 
dangers in this approach, however, especially if the 
largest cluster is close to the origin of conformational 
space (e.g. phenyl rings in the trial data set). In order 
to be rigorous we have therefore chosen to apply the 
single-linkage method, with continuous reorien- 
tation, to the mean torsion angles (¥;) of those 
clusters with population N? ___ 3. The single-linkage 
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'clustering of clusters' is allowed to run to com- 
pletion to generate an asymmetric unit. The cluster- 
overlap array (see ADT1) at the end point then 
indicates additional symmetry reorientations which 
must be applied to each of the Jarvis-Patrick clusters 
to bring them into a consistent asymmetric unit. The 
mean torsion angles are then calculated for this 
asymmetric unit from all clusters of population _> 3; 
clusters of population 1 or 2 are then reoriented to 
this mean. The final statistics, described in detail in 
ADT1, are generated from the fully reoriented tor- 
sional sequences of each of the Jarvis-Patrick 
clusters. 

Numerical results from the symmetry-modified 
algorithm 

The clustering ability of the modified Jarvis- 
Patrick algorithm was tested for the trial data set by 
varying the parameters Kjp, Dma × and Cjp. These 
results are given in Table 4. The most acceptable 
chemical results, marked * within each subgroup, 
show very similar clustering structures. They vary 
only in the presence or absence of a number of 
smaller clusters (Np _< 6), and by small variations in 
Np for the larger clusters. The use of symmetry- 
modified Dpq values to assemble the NN table yields 
no zero-filled Kjp lists at Oma x = 0"10; results for Kjp 
= 10, Oma x = 0"15, are identical to those for Kjp-- 
10, Dmax = 0" 10. This is not true for Dmax = 0"05 and 
some smaller clusters are lost at Cjp > 5 for the 
reasons noted above for the unmodified algorithm. 
Reduction of Kjp to 5 severely reduces the discri- 
minatory power of the algorithm as Cjp increases. 
An increase in Kjp appears to be of no particular 
benefit, but optimum clustering seems to occur at 
higher Cjp/Kjp ratios for increasing Kjp and constant 
Dma ×. We stress that these results may only apply to 
this data set and are very preliminary in nature. 
Further results for this, and other data sets will be 
presented in Part 3 of this series (Allen, Doyle & 
Taylor, 1991 b). 

The nature of the Jarvis-Patrick algorithm 
requires that a subjective judgement of optimum 
clustering must be made from examination of a few 
runs using different Kjp, Omax and Cjp values. The 
results presented in Tables 2 and 4 suggest that, for 
reasonable settings of Kjp and Dmax, Cjp is the most 
critical variable involved in cluster generation. For 
the trial data set the single pass with Kjp= 10, Dmax 
--0" 10 and Cjp = 6 was chosen as optimum for the 
symmetry-modified algorithm. The resultant cluster 
structure is summarized in Table 5, together with 
some comparative data from the single-linkage 
approach of ADT1. 

The overall results of Table 5 are in excellent 
agreement with the single-linkage data. The major 

Table 4. Clustering ability of the symmetry-modified 
Jarvis-Patrick algorithm for ranges of Kjp, Oma x and 

Cjp 

Nt~, N2, N3 a n d  N,  a r e  t h e  n u m b e r s  o f  c l u s t e r s  c o n t a i n i n g  1, 2, 3 a n d  _> 4 
f r a g m e n t s .  N~p ax is t he  size o f  t he  l a rges t  c lus t e r .  T h e  m o s t  a c c e p t a b l e  
c h e m i c a l  r e su l t s  a r e  m a r k e d  w i th  a n  a s t e r i sk .  

Kjp Dm~ Gp N, N: N~ N,. N~p a" 
5 0"10 1 9 5 I 12" 49 

2 16 7 4 6 19 
3 65 17 4 22 9 

10 0"05 3 15 0 0 6 64 
4 27 0 0 5 57 
5 32 0 0 7 48 
6 36 1 0 9" 46 
7 52 6 I 22 14 

10 0.10 3 5 I I 5 73 
4 5 1 1 5 73 
5 6 2 0 9 48 
6 14 2 0 12" 46 
7 30 7 I 25 14 
8 72 12 5 20 9 

10 0.15 5 6 2 0 9 48 

15 0.10 5 3 I 0 5 73 
7 4 I 0 5 73 
9 5 I 0 6 73 

10 9 I 0 9* 56 
11 15 2 1 14 35 
12 40 5 6 19 24 

20 0.10 8 I I 0 5 74 
10 2 1 0 5 74 
12 6 1 0 6 57 
14 8 I 0 9 57 
15 10 1 0 I1" 57 
16 19 4 0 15 33 
17 42 5 4 18 26 

differences involve (a) the coalescence of the 1,2- and 
1,3-diplanar conformations (single-linkage clusters 9 
and 10) into Jarvis-Patrick cluster 11; (b) the emerg- 
ence of a somewhat loose (in view of the e.s.d.'s) 
cluster of distorted twist-boats (cluster 12, Table 5); 
and (c) some redistribution of fragments within the 
boat (2-6) and within the chair (7-9) clusters. 

The averages of Table 5 are presented after the 
'clustering of clusters' which reorients all fragments 
into an asymmetric unit of conformational space. 
The fully reoriented data matrix, with associated 
cluster numbers for each fragment, may be passed to 
the principal-component routine. Graphical output 
similar to that of Fig. 5 of ADT1 may then be 
generated. 

5. Unmodified complete-linkage algorithm 

The complete-linkage algorithm (see e.g. Everitt, 
1980) is indentical to single-linkage cluster analysis 
(ADT1) except that, at any point in the agglomera- 
tive process, the distance between two clusters is 
defined as the distance between their most remote 
members rather than between their nearest members. 
The complete-linkage algorithm therefore follows 
exactly the path detailed in steps 0-5 of ADT1 for 
the single-linkage method, but with modification to 
steps 3 and 4. The complete process is: 
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Table 5. Mean torsion angles (°; e.s.d. 's in parentheses) for major clusters obtained with the symmetry-modified 
Jarvis-Patrick algorithm at Kjp = 10, Dmax = 0" 1 and Cjp = 6 for the trial data set 

C o l u m n  h e a d i n g s  a r e  a s  f o r  T a b l e  3. 

II  9 - 3-0 (6) 15'4 (22) 7-3 (20) - 4 0 . 3  (18) 52"7 (24) --31-4 (19) 

C l a s s  N 7  N~ P N~  L N~p L r ,  r2 r3 r4 r5 r6 

Phenyl  I 35 I 35 - 1.0 (2) 0.5 (2) I-2 (2) - 2.4 (2) 2.0 (2) - 0 . 3  (1) 

Boat  2 30 2 34 - 70.9 (7) 70.5 (6) 0.1 (4) - 70.0 (6) 69.6 (6) 0.6 (5) 
3 14 3 11 - 54.8 (8) 59.3 (8) - 3-7 (11) - 53.9 (13) 56.8 (9) - 2.9 (10) 
4 9 4 5 - 55.3 (18) 71.6 (15) - 6-5 (12) - 66.2 (9) 83-8 (14) - 18.8 (20) 
5 6 5 4 - 50.8 (13) 58.2 (21) 15.3 (39) - 84.3 (20) 93-8 (19) - 27.1 (18) 
6 4 - 6 4 . 9  (9) 66.9 (13) 5.2 (15) - 76-7 (8) 79.5 (9) - 8.2 (3) 

Cha i r  7 46 6 51 54-0 (5) - 53.2 (6) 53.7 (6) - 55-7 (8) 56.3 (7) - 5 4 . 9  (5) 
8 4 7 4 52.3 (5) - 6 9 . 9  (3) 81.2 (3) - 8 1 . 7  (7) 78.8 (4) - 58.2 (4) 
9 9 - 37-5 (12) - 41.1 (14) 56.5 (14) - 6 6 . 1  (19) 61.9 (17) --48-7 (9) 

H a l ~ c h a i r  10 29 8 26 9.2 (9) 1.2 (3) 19.2 (7) - 4 8 . 7  (7) 60.6 (8) - 39.9 (11) 

Sofa and 9 4 
screw-boat  

10 3 

Twis t -boa t  12 9 - 36.6 (24) 73.3 (34) - 22.2 (26) - 50.5 (26) 89.1 (33) - 36.5 (13) 

Step O. Calculation of dissimilarities 
n The torsional dissimilarities Dpq a r e  calculated as 

described above and in ADT1 [equations (1) and (2)]. 

Step 1. Formation of  the initial cluster 

The two most similar fragments (a) and (b), corre- 
sponding to the smallest dissimilarity coefficient, are 
combined to form an initial cluster of population Np 
= 2 .  

Step 2. Formation of an additional new cluster 

If Dcd is the next smallest dissimilarity and neither of 
the fragments (c) or (d) are members of a cluster with 
Np ___ 2, then they are combined to form a new cluster 
(c and d). 

Step 3. Addition of a fragment to an existing cluster 

A fragment (c) can only enter an existing cluster 
(a, b .... ) if the maximum value of D~c, DT, c,... is still 
smaller than either: (i) the next available smallest DT, q 
value; or (ii) any available D"~y value, where one or 
both of x and y are clusters of population Np >_ 2 
(the D~y being calculated as maxima as described 
here or at step 4 below). Fragment (c) enters (a,b,...) 
on a furthest-neighbour basis, which is an alternative 
name for the complete-linkage method. 

Step 4. Addition of a cluster to a cluster 

Two clusters, e.g. (a and b) and (c and d) may 
merge to form a single cluster (a, b, c and d) if the 
maximum value of /)~c, D~d, D~bc or D~bd is smaller 
than either (i) or (ii) at step 3 above. 

Step 5. Ending the clustering process 

Cluster formation occurs at step 1, and at every 
iteration of steps 2, 3 and 4 (dependent on the 
dissimilarity considerations described above). The 

process ends after N f - 1  clustering steps when all 
fragments are in a single cluster. This exactly mirrors 
the single-linkage case and implementation pro- 
cedures for initial cluster listings, detection and 
specification of a suitable stop point are exactly as 
described in ADT1. 

The use of the furthest-neighbour criteria at steps 
of type 3 and 4 means that there is a tendency for 
these steps to be avoided in the early stages of the 
complete-linkage method. The algorithm therefore 
attempts to minimize the effects of 'chaining'. The 
possible functional advantages of the complete- 
linkage method are balanced by the fact that it is the 
most computationally intensive of the algorithms 
discussed here and in ADT1. 

Results for the unmodified complete-linkage algorithm 

The complete-linkage algorithm was run to com- 
pletion on the trial data set and graphs of dissimila- 
rity and dissimilarity difference versus step number 
(Figs. 2a and 2b) were used, in conjunction with a 
visual scan of clustering output, to select step 170 as 
a suitable stop point. The maximum normalized 
torsional dissimilarity used by the algorithm was 
< 0.079, corresponding to a maximum mean torsion- 
angle difference of 2-4 ° for conformations assigned 
to the same cluster. At this point 201 fragments had 
been assigned to 31 clusters with Np _> 2, of which 14 
had Np -> 4 and are listed in Table 6. For the single- 
linkage method the corresponding figures were 184 
fragments in 24 clusters of Np _> 2 with 11 having Np 
__ 4. The single-linkage stop point (160) is ten steps 
below that obtained here and the number of single- 
linkage clusters is also lower. These differences are a 
direct result of the selective use of the furthest- 
neighbour criterion in the present algorithm. 

In broad terms the subdivision of Table 6 mirrors 
the results of Table 4 in ADTI and Table 3 in the 
present paper. There are, however, some interesting 
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Table 6. Mean torsion angles (o; e.s.d. 's in parentheses)for major clusters (Np >_ 4) obtained with the unmodified 
complete-linkage algorithm at step 170 for the trial data set 

N2, is the cluster number and/~pis the population; N~c, N~ are the corresponding data for the single-linkage method (Allen, Doyle & Taylor, 1991a; Table 4). 

Class 
Phenyl 

Boat 

Chair 

Half-chair 

Sofa 

I 36 I 36 0.6 (3) 0.0 (3) -0.8 (6) 1.0 (6) 

2 19 2 15 3.7 (14) -71 .6  (20) 67-8 (18) 1.0 (9) 
3 9 3 15 1.7 (10) 70.5 (7) - 72-4 (13) 1.4 (18) 
4 5 4 7 70-9 (12) -2 -2  (16) -68 .9  (14) 72.8 (46) 
5 5 5 4 -69 .0  (26) 68.3 (40) 1.3 (27) -69 .3  (4) 
6 4 6 4 64.8 (31) -67 .6  (39) 0.0 (0.9) 67.2 (36) 
7 7 - 4 . 3  (23) 62.2 (36) -57 .2  (28) - 4 . 2  (22) 

8 34 8 38 55-7 (7) - 54.7 (6) 53.5 (8) - 54-3 (11) 
9 17 9 19 -55.1 (13) 53.2(10) -52 .3  (15) 53.9 (15) 

10 4 41.8 (17) -45.1 (29) 58.6 (42) -65-5 (34) 

I1 5 I1 5 15-3(33) -5 .6 (35 )  23.9(36) -51-0(31)  
12 4 - - 0.9 (7) - 7.1 (48) 34-8 (62) - 53.6 (38) 
13 4 17.1 (39) -46-5 (32) 59.9 (9) -40-4 (42) 

14 6 60.1 (33) -33 .4  (32) 2.1 (30) I.I (16) 

¢~ r6 
- 0 . 4  (3) - 0.4 ( 4 )  

-67 .6  (17) 65.1 (16) 
70-6 (17) -72 .3  (8) 

- 5 . 4  (45) -64 .3  (29) 
67.2 (30) 0-9 (20) 

-64 .7  (53) -0.1 (17) 
63.1 (26) -57 .5  (20) 

54.7 (8) -55 .2  (8) 
-55-3 (13) 55-4 (13) 

61.7 (45) -51 .0  (25) 

62.0 (19) -43 .4  (22) 
45.5 (20) - 19.2 (25) 

9.6 (39) 2.0 (10) 

26-9 (25) -56 .8  (32) 

discrepancies: (a) Amongst  the boat conformers 
there is a redistribution compared with ADT1.  The 
smaller subgroup (4) of  less puckered boats identified 
by the single-linkage method is now part of  an 
enlarged complete-linkage cluster 2, whilst clusters 3 
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Fig. 2. (a) Plot of fusion dissimilarity Dx versus step number x, 
and (b) plot of fusion dissimilarity difference [Dx - D~_ i] versus 
step number x for the unmodified complete-linkage results. 

and 7 from the present algorithm are subdivisions of  
cluster 3 of  ADT1 (Table 4). (b) The clustering of 
chair conformations here is more akin to that of  the 
Jarvis-Patrick algorithm (Table 3 of  this paper). (c) 
The distribution of the small clusters covering the 
more flexible intermediate forms (clusters 11-14, 
Table 6) is different to that obtained in either ADT1 
or by the Jarvis-Patrick method. 

6. Symmetry-modified complete-linkage clustering 

The complete-linkage algorithm can be modified to 
allow for fragment symmetry in exactly the same way 
as was used for the Jarvis-Patrick method, namely: 

(a) Each pair of fragments (p and q) is superim- 
posed in all possible ways and a dissimilarity coeffi- 
cient calculated from (l) for each superposition. The 
lowest coefficient thus obtained is taken as D~q. 

(b) The new dissimilarity matrix is used to initiate 
complete-linkage cluster analysis. A suitable stop 
point in the agglomerative process is chosen, as 
usual. 

(c) At the chosen stop point, the members of  each 
cluster are oriented correctly with respect to one 
another by selecting an arbitrary fragment in the 
cluster (the 'root') and superimposing the remaining 
members of  the cluster on this root. Difficulties may 
arise if the chosen root is far removed from the 
centroid of the cluster [these cases are dealt with in 
the next paper in this series (Allen, Doyle & Taylor, 
1991b)]. 

(d) The set of  clusters at the chosen stop point are 
placed in an asymmetric unit of conformational 
space by performing single-linkage analysis on the 
cluster means, the agglomerative process being 
allowed to go to completion. This determines the 
symmetry operations that must be performed on the 
various clusters to bring them into their closest 
mutual proximity. 
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Numerical results for the symmetry-modified 
algorithm 

Plots of the dissimilarity and dissimilarity 
difference versus step number for the symmetry- 
modified complete-linkage run are given in Figs. 3(a) 
and 3(b). Consideration of these plots, and of the 
selected printouts of cluster membership, led to step 
203 being chosen as the optimum clustering point. 
The maximum normalized dissimilarity was < 0.072, 
corresponding to a maximum mean torsion-angle 
difference of 2.2 ° for conformations assigned to the 
same cluster. At this stage 220 fragments had been 
assigned to 17 clusters with Np >_ 2, of which 210 
were in the 13 clusters with Np _> 4, for which data 
are presented in Table 7. Some other comparisons 
with the results from ADT1 and from this paper are 
given in Table 8. The complete-linkage stop point 
(203) is again much higher than for single-linkage 
(170), a further indication of the influence of the 
furthest-neighbour criteria at steps 3 and 4 of the 
complete-linkage algorithm. Table 7 should be com- 
pared with Table 5 of this paper and Table 7 of 
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Fig. 3. (a) Plot of  fusion dissimilarity Dx versus step number x, 
and (b) plot of fusion dissimilarity difference [D., - D~_ ,] versus  
step number x for the modified complete-linkage results. 

ADT1. The overall clustering structure is very simi- 
lar to that generated by other algorithms, but some 
clusters have slightly larger populations. There are 
some differences in cluster assignments relating to 
the more flexible forms represented in Table 7 by 
clusters 9-13. 

7. Discussion 

Both the Jarvis-Patrick and complete-linkage 
methods appear to be excellent, even preferable, 
alternatives to the more common single-linkage tech- 
nique. However, some trials with different values of 
the Jarvis-Patrick parameters are required to obtain 
optimum clustering. Applications of this algorithm 
to a wider variety of data sets will provide more 
information on suitable settings for these parameters. 
Detection of an appropriate STOP point remains a 
problem for the complete-linkage method. Graphs of 
the type shown in Figs. 2 and 3 can only provide a 
broad indication of possible settings. Other suggested 
indicators can be complex to program and do not 
have proven reliability (Everitt, 1980). We stress that 
'optimal clustering' is an essentially subjective judge- 
ment, to be made primarily on the grounds of chemi- 
cal sensibility. For this reason, the visual survey of 
cluster structures in the vicinity of an algorithmically 
predicted STOP point represents a vital stage in any 
analysis by hierarchical clustering techniques. This is 
equivalent to variation of clustering criteria in non- 
hierarchical methods, as noted above for the Jarvis- 
Patrick algorithm. 

At this stage of development, both algorithms 
generate an asymmetric set of mean torsion angles 
for each cluster. The problem of whether to "symme- 
trize' those clusters which are close to special posi- 
tions in conformational space is noted in ADT1. A 
flexible solution, applicable to all three algorithms 
discussed here and in ADT1, has been developed and 
will be presented in a later paper (Allen & Taylor, 
1991). 

The trial data set of six-membered carbocyles 
employed here, and in ADTI,  has proved a particu- 
larly interesting test of the clustering algorithms. 
None of the algorithms has any problem in clus- 
tering the major conformations, chair, boat and 
planar (phenyl), which are well separated in confor- 
mational space. The major differences, whether 
between different steps of the single(complete)- 
linkage methods, or between Jarvis-Patrick runs 
with different parameters, lie in the assignment of 
'intermediate' conformations along the known 
pseudorotation and interconversion pathways (see 
e.g. Boeyens, 1978). The boat-twist-boat pathway is 
well represented in Table 5 of this paper by the pure 
boats of clusters 2 and 3, through the 'twist-boat 
distortion' of cluster 4, to the (albeit loose) group of 
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Table 7. Mean torsion angles (°; e.s.d's in parentheses)for major clusters obtained with the symmetry-modified 

Class 
Phenyl 

Boat 

Chair 

Half-chair 

Sofa 

Screw-boat 

Twist-boat 

complete-linkage algorithm at step 203 for the trial data set 

Column headings are as for Table 6. 

N,  ~. N~p Nl,. N~, r ,  r2 r3 r4 
I 35 1 35 1.2 (2) 0"5 (2) - 1'0 (2) -0"3 (I) 

2 32 2 34 -71 .9  (7) 71.7 (6) -0 .3  (6) -70 .4  (6) 
3 16 3 11 -54 .7(13)  57.7(10) - 2 6 ( 9 )  -56 .0 (9 )  
4 9 4 5 -66 .2  (9) 83.8 (14) - 188 (20) -55 '3  (18) 
5 5 5 4 -86 '3  (5) 92"0(10) - 25 ' 6 (11 )  -52 .0  (5) 

6 55 6 51 51.9 (7) - 50"9 (9) 53.0 (6) - 56.3 (7) 
7 5 7 4 50.7 (16) -69-2 (8) 83.3 (21) -83 .3  (17) 

8 29 8 26 1 I-4 (0"6) 0"3 (5) 19.0 (7) - 48-8 (8) 

9 4 9 4 - 0 . 6  (21) 1.7 (17) 29.0 (16) - 5 9 3  (35) 
10 4 19"3 (27) 3.8 (10) - 1'3 (6) -24.1 (21) 

II 8 10 3 5-2(15) 17.7(13) - 2 3 ( 1 2 )  - 3 5 2 ( 1 2 )  

12 4 -42-6  (18) 74-0 (31) - 11.3 (47) -61 .7  (48) 
13 4 - -38"0 (11) 79.6 (27) - 2 9 9  (18) -44"3 (31) 

7" 5 7- 6 
2.0 (2) - 2.4 (3) 

69-6 (6) 1.2 (6) 
59.7 (8) - 3 . 5  (9) 
71.6(15) -6 .5 (12 )  
56.6 (17) 17.8 (36) 

57.5 (7) - 55. l (5) 
81-5 (27) -59-0 (9) 

61.9 (8) -42.1 (7) 

61.7 (26) -31 .7  (14) 
47.1 (36) -44.3 (44) 

56.4 (16) -41 .2  (16) 

97.9 (35) -34.3 (12) 
86.9 (56) -37.1 (22) 

Table 8. Comparison of clustering structures of the 
trial data set for the symmetry-modified single-linkage 
(ADT1), Jarvis-Patrick (this paper) and complete- 

linkage algorithms (this paper) 

Nj, N2, N~ and N,. are the number of  clusters with 1, 2, 3 and ~ 4 members. 
D . . . .  rmax are the maximum dissimilarity value and the corresponding 
maximum mean torsional difference C) used in clustering. 

Algorithm Single-linkage Jarvis-Patrick Complete-linkage 
Stop point 170 203 
D,,,, 0.138 0. I 0 0.072 
~,,,~ 4.1 3.0 2.2 
N, 39 14 2 
N2 3 2 2 
N3 I 0 2 
N,. 9 12 13 

or, indeed, well separated in space from each other. 
The assessment of intracluster and intercluster 
distances (dissimilarities) is obviously important in 
determing optimum clustering conditions. These 
factors are fully discussed in the next paper in this 
series (Allen, Doyle & Taylor, 1991 b). 
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in this work and the referees for a careful reading of 
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bridge, and ICI Agrochemicals Division for financial 
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twist-boats in clusters 12 and 13. The chair-twist- 
boat interconversion pathway is populated by half- 
chair and 1,3-diplanar (screw boat) conformations 
which are also spatially close to the (1,2-diplanar) 
sofas. Distortion of these conformations requires 
little energy, and it is not surprising that the 
algorithms have difficulty in effecting reasonable 
separations. It is quite pleasing that the dominant 
half-chair conformation for the cyclohex-l-enes of 
the trial data set is clearly recognized. It is doubtful, 
however, if any of the smaller conformational clus- 
ters, representing distortions of the dominant confor- 
mations of the subset, are either isotropic in shape 
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